15 research outputs found

    High performance sensorless vector control of induction motor drives

    Get PDF
    The aim of this research project was to develop a vector controlled induction motor drive operating without a speed or position sensor but having a dynamic performance comparable to a sensored vector drive. The methodology was to detect the motor speed from the machine rotor slot harmonics using digital signal processing and to use this signal to tune a speed estimator and thus reduce or eliminate the estimator’s sensitivity to parameter variations. Derivation of a speed signal from the rotor slot harmonics using a Discrete Fourier Transform-based algorithm has yielded highly accurate and robust speed signals above machine frequencies of about 2 Hz and independent of machine loads. The detection, which has been carried out using an Intel i860 processor in parallel with the main vector controller, has been found to give predictable and consistent results duing speed transient conditions. The speed signal obtained from the rotor slot harmonics has been used to tune a Model Reference Adaptive speed and flux observer, with the resulting sensorless drive operating to steady state speed accuracies down to 0.02 rpm above 2 Hz (i.e. 60 rpm for the 4 pole machine). A significant aspect of the research has been the mathematical derivation of the speed bandwidth limitations for both sensored and sensorless drives, thus allowing for quantitative comparison of their dynamic performance. It has been found that the speed bandwidth limitation for sensorless drives depends on the accuracy to which the machine parameters are known and that for maximum dynamic performance it is necessary to tune the flux and speed estimator against variations in stator resistance in addition to the tuning mechanism deriving from the DFT speed detector. New dynamic stator resistance tuning algorithms have been implemented. The resulting sensorless drive has been found to have a speed bandwidth equivalent to sensored drives fitted with medium resolution encoders (i.e. about 500 ppr), and a zero speed accuracy of ± 8 rpm under speed control. These specifications are superior to any reported in the research literature

    High performance sensorless vector control of induction motor drives

    Get PDF
    The aim of this research project was to develop a vector controlled induction motor drive operating without a speed or position sensor but having a dynamic performance comparable to a sensored vector drive. The methodology was to detect the motor speed from the machine rotor slot harmonics using digital signal processing and to use this signal to tune a speed estimator and thus reduce or eliminate the estimator’s sensitivity to parameter variations. Derivation of a speed signal from the rotor slot harmonics using a Discrete Fourier Transform-based algorithm has yielded highly accurate and robust speed signals above machine frequencies of about 2 Hz and independent of machine loads. The detection, which has been carried out using an Intel i860 processor in parallel with the main vector controller, has been found to give predictable and consistent results duing speed transient conditions. The speed signal obtained from the rotor slot harmonics has been used to tune a Model Reference Adaptive speed and flux observer, with the resulting sensorless drive operating to steady state speed accuracies down to 0.02 rpm above 2 Hz (i.e. 60 rpm for the 4 pole machine). A significant aspect of the research has been the mathematical derivation of the speed bandwidth limitations for both sensored and sensorless drives, thus allowing for quantitative comparison of their dynamic performance. It has been found that the speed bandwidth limitation for sensorless drives depends on the accuracy to which the machine parameters are known and that for maximum dynamic performance it is necessary to tune the flux and speed estimator against variations in stator resistance in addition to the tuning mechanism deriving from the DFT speed detector. New dynamic stator resistance tuning algorithms have been implemented. The resulting sensorless drive has been found to have a speed bandwidth equivalent to sensored drives fitted with medium resolution encoders (i.e. about 500 ppr), and a zero speed accuracy of ± 8 rpm under speed control. These specifications are superior to any reported in the research literature

    Open-End Winding Induction Motor Drive Based on Indirect Matrix Converter

    Get PDF
    Open-end winding induction machines fed from two standard two-level voltage source inverters (VSI) provide an attractive arrangement for AC drives. An alternative approach is to use a dual output indirect matrix converter (IMC). It is well known that IMC provides fully bidirectional power flow operation, with small input size filter requirements. Whilst a standard IMC consists of an AC–DC matrix converter input stage followed by a single VSI output stage, it is possible to replicate the VSI to produce multiple outputs. In this chapter, an open-end winding induction machine fed by an IMC with two output stages is presented. Different modulation strategies for the power converter are analyzed and discussed

    Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: feasibility study on an agar phantom model

    Full text link
    This is an author-created, un-copyedited versíon of an article published in Physiological Measurement. IOP Publishing Ltd is not responsíble for any errors or omissíons in this versíon of the manuscript or any versíon derived from it. The Versíon of Record is available online at http://doi.org/10.1088/0967-3334/31/4/009[EN] The aim of this work was to study linear deterministic models to predict tissue temperature during radiofrequency cardiac ablation (RFCA) by measuring magnitudes such as electrode temperature, power and impedance between active and dispersive electrodes. The concept involves autoregressive models with exogenous input (ARX), which is a particular case of the autoregressive moving average model with exogenous input (ARMAX). The values of the mode parameters were determined from a least-squares fit of experimental data. The data were obtained from radiofrequency ablations conducted on agar models with different contact pressure conditions between electrode and agar (0 and 20 g) and different flow rates around the electrode (1, 1.5 and 2 L min¿1). Half of all the ablations were chosen randomly to be used for identification (i.e. determination of model parameters) and the other half were used for model validation. The results suggest that (1) a linear model can be developed to predict tissue temperature at a depth of 4.5 mm during RF cardiac ablation by using the variables applied power, impedance and electrode temperature; (2) the best model provides a reasonably accurate estimate of tissue temperature with a 60% probability of achieving average errors better than 5 °C; (3) substantial errors (larger than 15 °C) were found only in 6.6% of cases and were associated with abnormal experiments (e.g. those involving the displacement of the ablation electrode) and (4) the impact of measuring impedance on the overall estimate is negligible (around 1 °C).This work was supported by the 'Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica del Ministerio de Educacion y Ciencia' of Spain (TEC200801369/ TEC) and by an R&D contract (CSIC-20060633) between Edwards Lifescience Ltd and the Spanish National Research Council (CSIC). The English revision and correction of this paper was funded by the Universidad Politecnica de Valencia, Spain. We thank L Melecio for his invaluable technical support in conducting the experiments.Blasco-Giménez, R.; Lequerica, JL.; Herrero, M.; Hornero, F.; Berjano, E. (2010). Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: feasibility study on an agar phantom model. Physiological Measurement. 31(4):581-594. https://doi.org/10.1088/0967-3334/31/4/009S581594314Hong Cao, Tungjitkusolmun, S., Young Bin Choy, Jang-Zern Tsai, Vorperian, V. R., & Webster, J. G. (2002). Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation. IEEE Transactions on Biomedical Engineering, 49(3), 247-253. doi:10.1109/10.983459Hong Cao, Vorperian, V. R., Jang-Zem Tsai, Tungjitkusolmun, S., Eung Je Woo, & Webster, J. G. (2000). Temperature measurement within myocardium during in vitro RF catheter ablation. IEEE Transactions on Biomedical Engineering, 47(11), 1518-1524. doi:10.1109/10.880104Hamner, C. E., Potter, D. D., Cho, K. R., Lutterman, A., Francischelli, D., Sundt, T. M., & Schaff, H. V. (2005). Irrigated Radiofrequency Ablation With Transmurality Feedback Reliably Produces Cox Maze Lesions In Vivo. The Annals of Thoracic Surgery, 80(6), 2263-2270. doi:10.1016/j.athoracsur.2005.06.017HARTUNG, W. M., BURTON, M. E., DEAM, A. G., WALTER, P. F., McTEAGUE, K., & LANGBERG, J. J. (1995). Estimation of Temperature During Radiofrequency Catheter Ablation Using Impedance Measurements. Pacing and Clinical Electrophysiology, 18(11), 2017-2021. doi:10.1111/j.1540-8159.1995.tb03862.xDing Sheng He, Bosnos, M., Mays, M. Z., & Marcus, F. (2003). Assessment of myocardial lesion size during in vitro radio frequency catheter ablation. IEEE Transactions on Biomedical Engineering, 50(6), 768-776. doi:10.1109/tbme.2003.812161KO, W.-C., HUANG, S. K. S., LIN, J.-L., SHAU, W.-Y., LAI, L.-P., & CHEN, P. H. (2001). New Method for Predicting Efficiency of Heating by Measuring Bioimpedance During Radiofrequency Catheter Ablation in Humans. Journal of Cardiovascular Electrophysiology, 12(7), 819-823. doi:10.1046/j.1540-8167.2001.00819.xLabonte, S. (1994). Numerical model for radio-frequency ablation of the endocardium and its experimental validation. IEEE Transactions on Biomedical Engineering, 41(2), 108-115. doi:10.1109/10.284921Lai, Y.-C., Choy, Y. B., Haemmerich, D., Vorperian, V. R., & Webster, J. G. (2004). Lesion Size Estimator of Cardiac Radiofrequency Ablation at Different Common Locations With Different Tip Temperatures. IEEE Transactions on Biomedical Engineering, 51(10), 1859-1864. doi:10.1109/tbme.2004.831529Lequerica, J. L., Berjano, E. J., Herrero, M., Melecio, L., & Hornero, F. (2008). A cooled water-irrigated intraesophageal balloon to prevent thermal injury during cardiac ablation: experimental study based on an agar phantom. Physics in Medicine and Biology, 53(4), N25-N34. doi:10.1088/0031-9155/53/4/n01Mattingly, M., Bailey, E. A., Dutton, A. W., Roemer, R. B., & Devasia, S. (1998). Reduced-order modeling for hyperthermia: an extended balanced-realization-based approach. IEEE Transactions on Biomedical Engineering, 45(9), 1154-1162. doi:10.1109/10.709559PILCHER, T. A., SANFORD, A. L., SAUL, J. P., & HAEMMERICH, D. (2006). Convective Cooling Effect on Cooled-Tip Catheter Compared to Large-Tip Catheter Radiofrequency Ablation. Pacing and Clinical Electrophysiology, 29(12), 1368-1374. doi:10.1111/j.1540-8159.2006.00549.xRodríguez, I., Lequerica, J. L., Berjano, E. J., Herrero, M., & Hornero, F. (2007). Esophageal temperature monitoring during radiofrequency catheter ablation: experimental study based on an agar phantom model. Physiological Measurement, 28(5), 453-463. doi:10.1088/0967-3334/28/5/001SCHUMACHER, B., EICK, O., WITTKAMPF, F., PEZOLD, C., TEBBENJOHANNS, J., JUNG, W., & LUDERITZ, B. (1999). Temperature Response Following Nontraumatic Low Power Radiofrequency Application. Pacing and Clinical Electrophysiology, 22(2), 339-343. doi:10.1111/j.1540-8159.1999.tb00448.xTeixeira, C. A., Ruano, A. E., Ruano, M. G., Pereira, W. C. A., & Negreira, C. (2006). Non-invasive temperature prediction of in vitro therapeutic ultrasound signals using neural networks. Medical & Biological Engineering & Computing, 44(1-2), 111-116. doi:10.1007/s11517-005-0004-2Teixeira, C. A., Ruano, M. G., Ruano, A. E., & Pereira, W. C. A. (2008). A Soft-Computing Methodology for Noninvasive Time-Spatial Temperature Estimation. IEEE Transactions on Biomedical Engineering, 55(2), 572-580. doi:10.1109/tbme.2007.90102

    Diode-Based HVdc Link for the Connection of Large Offshore Wind Farms

    Full text link
    (c) 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper includes a technical feasibility study on the use of diode-based HVdc links for the connection of large offshore wind farms based on synchronous generators. A technique for the voltage and frequency control of the offshore ac grid is presented. The proposed control technique allows the operation of the rectifier end of the HVdc link in current or voltage control mode. Fault response to onshore voltage sags of up to 80 has been shown to be comparable to that of thyristor-based rectifiers. Moreover, the complete system shows an adequate fault-ride-through operation to solid short circuits at onshore inverter terminals. PSCAD® simulations are used to prove the technical feasibility of the proposed control techniques both in steady state and during transients.Manuscript received May 25, 2010; revised September 24, 2010 and December 17, 2010; accepted January 31, 2011. Date of publication March 17, 2011; date of current version May 18, 2011. This work was supported in part by the Spanish Ministry of Science and Technology and in part by the European Union FEDER funds under Grants DPI2007-64730 and DPI2010-16714. Paper no. TEC-00234-2010.Blasco Giménez, RM.; Añó Villalba, SC.; Rodríguez D'derlée, JJ.; Bernal-Perez, S.; Morant, F. (2011). Diode-Based HVdc Link for the Connection of Large Offshore Wind Farms. IEEE Transactions on Energy Conversion. 26(2):615-626. https://doi.org/10.1109/TEC.2011.2114886S61562626

    Vector control of an open-ended winding induction machine based on a two-output indirect matrix converter

    Get PDF
    The open-ended winding induction machine fed from a standard two-level Voltage Source Inverter (VSI) arrangement is an attractive solution for AC drives. An alternative power converter approach is to use an Indirect Matrix Converter (IMC) consisting of a matrix converter AC-DC input stage and two VSI output stages. This latter topology provides fully bidirectional power flow operation and requires only a small input filter. In this paper, a vector control strategy for an open-ended winding cage induction machine fed by a two-output IMC is presented. The modulation scheme for the input power converter stage aims to modify the virtual DC link voltage depending on the load voltage requirement. Additionally, the modulation strategy for the dual-inverter output aims to eliminate the zero sequence voltage applied to the load. A vector control scheme is used and the full system is modelled using a PSIM and MATLAB/Simulink platform. Experimental results from a 7.5 kW prototype are presented, demonstrating the feasibility of the topology and control strategy

    Theoretical characterization of transition state dynamical resonances in heavy-light-heavy reactions

    Get PDF
    The resonant reactivity of three elementary Heavy-Light-Heavy reactions is presented and discussed. Collinear reactivity, in which a vibrational adiabatic model is constructed, is used for a detailed analysis of resonance phenomena, which appear as a direct consequence of transition state metastable states in the strong interaction region of the potential energy surface. Their influence on the detailed mechanism of the elementary process is also discussed. The shape of the resonant peak, and the phase and the Argand plot of the S-matrix are used for a further characterization.Three-dimensional approximate calculations are used to test the evolution of the energy dependent structure present in detailed quantities when sums and integrations over all partial waves contributing to reaction are taken into account to obtain the usual averaged global quantities such as integral state-to-state cross sections

    Could it be advantageous to tune the temperature controller during radiofrequency ablation? A feasibility study using theoretical models

    Full text link
    Purpose: To assess whether tailoring the Kp and Ki values of a proportional-integral (PI) controller during radiofrequency (RF) cardiac ablation could be advantageous from the point of view of the dynamic behaviour of the controller, in particular, whether control action could be speeded up and larger lesions obtained. Methods: Theoretical models were built and solved by the finite element method. RF cardiac ablations were simulated with temperature controlled at 55 degrees C. Specific PI controllers were implemented with Kp and Ki parameters adapted to cases with different tissue values (specific heat, thermal conductivity and electrical conductivity) electrode-tissue contact characteristics (insertion depth, cooling effect of circulating blood) and electrode characteristics (size, location and arrangement of the temperature sensor in the electrode). Results: The lesion dimensions and T(max) remained almost unchanged when the specific PI controller was used instead of one tuned for the standard case: T(max) varied less than 1.9 degrees C, lesion width less than 0.2 mm, and lesion depth less than 0.3 mm. As expected, we did observe a direct logical relationship between the response time of each controller and the transient value of electrode temperature. Conclusion: The results suggest that a PI controller designed for a standard case (such as that described in this study), could offer benefits under different tissue conditions, electrode-tissue contact, and electrode characteristics.This work received financial support from the Spanish 'Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion' Grant no. TEC2008-01369/TEC and FEDER Project MTM2010-14909. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain. The authors alone are responsible for the content and writing of the paperAlba Martínez, J.; Trujillo Guillen, M.; Blasco Giménez, RM.; Berjano Zanón, E. (2011). Could it be advantageous to tune the temperature controller during radiofrequency ablation? A feasibility study using theoretical models. International Journal of Hyperthermia. 27(6):539-548. https://doi.org/10.3109/02656736.2011.586665S539548276Gaita, F., Caponi, D., Pianelli, M., Scaglione, M., Toso, E., Cesarani, F., … Leclercq, J. F. (2010). Radiofrequency Catheter Ablation of Atrial Fibrillation: A Cause of Silent Thromboembolism? Circulation, 122(17), 1667-1673. doi:10.1161/circulationaha.110.937953Anfinsen, O.-G., Aass, H., Kongsgaard, E., Foerster, A., Scott, H., & Amlie, J. P. (1999). Journal of Interventional Cardiac Electrophysiology, 3(4), 343-351. doi:10.1023/a:1009840004782PETERSEN, H. H., CHEN, X., PIETERSEN, A., SVENDSEN, J. H., & HAUNSO, S. (2000). Tissue Temperatures and Lesion Size During Irrigated Tip Catheter Radiofrequency Ablation: An In Vitro Comparison of Temperature-Controlled Irrigated Tip Ablation, Power-Controlled Irrigated Tip Ablation, and Standard Temperature-Controlled Ablation. Pacing and Clinical Electrophysiology, 23(1), 8-17. doi:10.1111/j.1540-8159.2000.tb00644.xTungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754Lai, Y.-C., Choy, Y. B., Haemmerich, D., Vorperian, V. R., & Webster, J. G. (2004). Lesion Size Estimator of Cardiac Radiofrequency Ablation at Different Common Locations With Different Tip Temperatures. IEEE Transactions on Biomedical Engineering, 51(10), 1859-1864. doi:10.1109/tbme.2004.831529Jain, M. K., & Wolf, P. D. (1999). Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Transactions on Biomedical Engineering, 46(12), 1405-1412. doi:10.1109/10.804568Panescu, D., Whayne, J. G., Fleischman, S. D., Mirotznik, M. S., Swanson, D. K., & Webster, J. G. (1995). Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 42(9), 879-890. doi:10.1109/10.412649Hong Cao, Vorperian, V. R., Tungjitkusolmun, S., Jan-Zern Tsai, Haemmerich, D., Young Bin Choy, & Webster, J. G. (2001). Flow effect on lesion formation in RF cardiac catheter ablation. IEEE Transactions on Biomedical Engineering, 48(4), 425-433. doi:10.1109/10.915708Tungjitkusolmun, S., Vorperian, V. R., Bhavaraju, N., Cao, H., Tsai, J.-Z., & Webster, J. G. (2001). Guidelines for predicting lesion size at common endocardial locations during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 48(2), 194-201. doi:10.1109/10.909640Schutt, D., Berjano, E. J., & Haemmerich, D. (2009). Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: A computational modeling study. International Journal of Hyperthermia, 25(2), 99-107. doi:10.1080/02656730802563051Langberg, J. J., Calkins, H., el-Atassi, R., Borganelli, M., Leon, A., Kalbfleisch, S. J., & Morady, F. (1992). Temperature monitoring during radiofrequency catheter ablation of accessory pathways. Circulation, 86(5), 1469-1474. doi:10.1161/01.cir.86.5.1469Calkins, H., Prystowsky, E., Carlson, M., Klein, L. S., Saul, J. P., & Gillette, P. (1994). Temperature monitoring during radiofrequency catheter ablation procedures using closed loop control. Atakr Multicenter Investigators Group. Circulation, 90(3), 1279-1286. doi:10.1161/01.cir.90.3.1279Lennox CD, Temperature controlled RF coagulation. Patent number: 5.122.137 Hudson NHEdwards SD, Stern RA, Electrode and associated system using thermally insulated temperature sensing elements. Patent number: US Patent 5,456,682Panescu D, Fleischman SD, Whayne JG, Swanson DK, (EP Technology. Effects of temperature sensor placement on performance of temperature-controlled ablation. IEEE 17th Annual Conference, Engineering in Medicine and Biology Society, Montreal, Canada (1995)BLOUIN, L. T., MARCUS, F. I., & LAMPE, L. (1991). Assessment of Effects of a Radiofrequency Energy Field and Thermistor Location in an Electrode Catheter on the Accuracy of Temperature Measurement. Pacing and Clinical Electrophysiology, 14(5), 807-813. doi:10.1111/j.1540-8159.1991.tb04111.xBerjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24Bhavaraju, N. C., Cao, H., Yuan, D. Y., Valvano, J. W., & Webster, J. G. (2001). Measurement of directional thermal properties of biomaterials. IEEE Transactions on Biomedical Engineering, 48(2), 261-267. doi:10.1109/10.909647Hong Cao, Tungjitkusolmun, S., Young Bin Choy, Jang-Zern Tsai, Vorperian, V. R., & Webster, J. G. (2002). Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation. IEEE Transactions on Biomedical Engineering, 49(3), 247-253. doi:10.1109/10.983459PETERSEN, H. H., & SVENDSEN, J. H. (2003). Can Lesion Size During Radiofrequency Ablation Be Predicted By the Temperature Rise to a Low Power Test Pulse in Vitro? Pacing and Clinical Electrophysiology, 26(8), 1653-1659. doi:10.1046/j.1460-9592.2003.t01-1-00248.xLANGBERG, J. J., LEE, M. A., CHIN, M. C., & ROSENQVIST, M. (1990). Radiofrequency Catheter Ablation: The Effect of Electrode Size on Lesion Volume In Vivo. Pacing and Clinical Electrophysiology, 13(10), 1242-1248. doi:10.1111/j.1540-8159.1990.tb02022.

    Association Between Preexisting Versus Newly Identified Atrial Fibrillation and Outcomes of Patients With Acute Pulmonary Embolism

    Get PDF
    Background Atrial fibrillation (AF) may exist before or occur early in the course of pulmonary embolism (PE). We determined the PE outcomes based on the presence and timing of AF. Methods and Results Using the data from a multicenter PE registry, we identified 3 groups: (1) those with preexisting AF, (2) patients with new AF within 2 days from acute PE (incident AF), and (3) patients without AF. We assessed the 90-day and 1-year risk of mortality and stroke in patients with AF, compared with those without AF (reference group). Among 16 497 patients with PE, 792 had preexisting AF. These patients had increased odds of 90-day all-cause (odds ratio [OR], 2.81; 95% CI, 2.33-3.38) and PE-related mortality (OR, 2.38; 95% CI, 1.37-4.14) and increased 1-year hazard for ischemic stroke (hazard ratio, 5.48; 95% CI, 3.10-9.69) compared with those without AF. After multivariable adjustment, preexisting AF was associated with significantly increased odds of all-cause mortality (OR, 1.91; 95% CI, 1.57-2.32) but not PE-related mortality (OR, 1.50; 95% CI, 0.85-2.66). Among 16 497 patients with PE, 445 developed new incident AF within 2 days of acute PE. Incident AF was associated with increased odds of 90-day all-cause (OR, 2.28; 95% CI, 1.75-2.97) and PE-related (OR, 3.64; 95% CI, 2.01-6.59) mortality but not stroke. Findings were similar in multivariable analyses. Conclusions In patients with acute symptomatic PE, both preexisting AF and incident AF predict adverse clinical outcomes. The type of adverse outcomes may differ depending on the timing of AF onset.info:eu-repo/semantics/publishedVersio

    Indirect matrix converter modulation strategies for open-end winding induction machine

    Get PDF
    In this paper an Indirect Matrix Converter (IMC) topology suitable for controlling an open-end winding induction machine is presented. The IMC is a direct power converter having no bulky energy storage elements with an input or current rectifying stage and a voltage source inverter as an output stage. To provide energy to an open-end winding induction machine two output stages are needed. Then, it is possible to obtain a voltage across any phase of the load up to 1.5 times the input phase voltage without overmodulation. Two pulse width modulation strategies are presented: the first one is based on space vector modulation that suppresses the zero sequence voltage in the load whereas the second one is a carrier-based modulation which generates lower distorted input converter currents. Results are presented and discussed
    corecore